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Abstract. The linear multiplicative programming is the minimization of the product of affine func-
tions over a polyhedral set. The problem with two affine functions reduces to a parametric linear
program and can be solved efficiently. For the objective function with more than two affine func-
tions multiplied, no efficient algorithms that solve the problem to optimality have been proposed,
however Benson and Boger have proposed a heuristic algorithm that exploits links of the problem
with concave minimization and multicriteria optimization. We will propose a heuristic method for
the problem as well as its modification to enhance the accuracy of approximation. Computational
experiments demonstrate that the method and its modification solve randomly generated problems
within a few percent of relative error.

1. Introduction

The linear multiplicative programming is the minimization of the producipof
affine functionsc] x + d; over a polyhedral seb, i.e.,

minimize f(x) =[], (cJx +d)
subjecttox € D,

whereD = {x|x € R"; Ax < b} is the polyhedral set defined by the system of
m linear inequalitiesAx < b. As will be seen in the next section, we can assume
without loss of generality that the affine functionsc] x + d; are positive orD.

When p = 2, problemP has been extensively investigated by, for example,
Swarup [17-19], Forgo [3,4], Konno-Kuno-Yajima [5], Konno-Kuno [6,7] and
proved to beN P-hard by Matsui [10] (see also Pardalos-Vavasis [11]). The al-
gorithms proposed in these papers are mainly based on the fact that an optimal
solution of P is among the vertices to be encountered while solving the parametric
linear program

minimize 6(c{x + d1) + (1 — 0)(cjx + d2)
subjecttox € D
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for6 € [0, 1] or

minimize c]x + d;
subjecttox € D; cjx +da =1

forn > 0.

For problemP with p > 2 there have been proposed several algorithms by, for
example, Thoai [20], Kuno-Yajima-Konno [9], Ryoo-Sahinidis [13] and Kuno [8].
See also Tuy [21] for the dimension reduction technique by dualization. Thoai [20]
exploited the equivalence between probl&nand problem

minimize []7_; yi
subjecttox € D
cl-Tx—l—dl- Ly fori=12...,p,

called the master problem. If one knows the set, Bapf pointsy € R? such
that(x, y) is a feasible solution of the master problem for some R”, problem
P clearly reduces to the minimization ¢f/_, y; on Y. He proposed an outer
approximation method which enumerates the linear inequalities defihifihe
master problem considered by Kuno, Yajima and Konno [9] is

minimize Y7, &(c]x +d;)
subjecttox € D.

Let 2(&) be the optimal value of this problem fgre R” and letE := {£|¢ €
RP; £ > 0O ]_[f:l & > 1}. They showed the reduction of problem to the
minimization of 2(¢) on E and developed an outer approximation method. The
methods of Ryoo and Sahinidis [13] and of Kuno [8] are based on the combination
of branch-and-bound and cutting plane methods.

Let C be thep x n matrix of row5cl.T fori = 1,2,..., p and consider the
following multicriteria problem (see for example Steuer [14]).

vector minimize Cx
subject to x € D.

Then clearly an optimal solution d@t is an efficient point of problemM C, where a
pointx € D is said to beefficientif there is no poinkk € D such thaCx < Cx and
Cx # CXx. Together with the pseudoconcavity of the objective functfofsee the
next section), we see that there is an optimal solutio® aimong the efficient
vertices of D. Exploiting this property, Benson-Boger [2] proposed a heuristic
method for problemP, which they named thefficient point search heuristic.
Their computational experiment for randomly generated problems supports that
their method efficiently provides fairly good approximate solutions of rather large
problems forp = 2, 3, 4, and 5.

In this paper we will propose a heuristic algorithm and its modification to en-
hance the accuracy of approximate solutions to be obtained. In Section 2 we show
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that the assumption thafx + d; > O for all x € D does not deteriorate the
generality of the problem. After introducing Benson-Boger's method in Section 3,
we propose a heuristic methedficient face search heuristin Section 4 as well

as its modification. In Section 5 some computational results will be reported. Some
remarks will be given in the last section.

2. Assumption

ForasubseK of {1,2, ..., p}let|K| denote the number of indices &f and let

xeD
D(K):={x|c/x+d; <0 foriekK
c/x+d; >0 fori¢K

Clearly problemP reduces to the family of problenB(K):

minimize 17, (¢]x + d;)

P(K) subjecttox € D(K).

If |[K| is odd, the objective function takes a nonpositive valueDqiX), while a
nonnegative value o® (K) if |K| is even. Therefore to find a globally optimal
solution of P, we have only to solve problemB(K) for K of odd cardinality
which is rewritten as

maximize ([ [;x —(c]x +dy)) x (]_[i¢K(cl.Tx +d)))
subjectto x € D(K).

LEMMA 2.1. SupposéK | is odd. Then the optimal value &f(K) is zero if and
only if there is an € {1,2, ..., p} such thaic] x + d; = Ofor all x € D(K).

Proof. The ‘if’ part is trivial. To show the ‘only if’ part, suppose the contrary,
thatis, for eachi € {1,2, ..., p} there is a poink’ € D(K) such thatx’ +d; #
0. Letx be their barycentetl/p) Y7, x'. Then one readily sees thatc D(K),
c/x+d <O0fori € Kandc/x +d; > 0fori ¢ K. This implies the negative
optimal value ofP (K'), and consequently a contradiction. a

Note that whetherD(K) is contained in{x|c/x + d; = O} for somei ¢
{1,2,..., p}can be readily checked by solving at meslinear programs. When
this does not occur, an equivalent form of probl&¢K) would be

maximize 3, 109(—(c[x +d)) + 3,4 l0g(c/x +d;)
subjecttox € D(K).
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By virtue of the monotonicity and concavity of the logarithmic function this is a
concave maximization problem, which is rather an easy problem to solve globally.
To sum up, we obtain

LEMMA 2.2. If D(K) # ¢ for somekK of odd cardinality, problenP reduces to a
number of concave maximization problems,

and we will assume throughout this paper that
ASSUMPTION 2.3.D(K) = ¢ for everyK of odd cardinality.

LEMMA 2.4. Under Assumption 2.3D = D(K) for a unique subsek C
{1,2,..., p} of even cardinality. Moreover

DcC {x c]x+d <0 foriek }
- c/x+d >0 fori¢ K |-
Proof. From Assumption 2.3 there is2 C {1, 2, ... , p} of even cardinality

with nonemptyD(K). If there is a pointt € D(K) satisfyingcx + d; = 0 for

somei € K, thenitbelongs also tB (K \{i}). This implies thatD (K \{i}) # # and

contradicts Assumption 2.3.4f x +d; = 0 for some ¢ K, thenx € D(K U{i}).

This is again a contradiction. Therefore for ang D(K) we obtain

c/x+d <0 forieK, c]x+d; >0 fori¢K. (2.2)

Next suppose thak # K’ and D(K) and D(K’) are both nonempty. Choose
arbitrarily pointsx € D(K) andx’ € D(K’). Then the line segmerit, x']
connecting them contains a pointof D(K) which satisfiesc]z + d; = 0 for
somei € (K\K') U (K’\K). This contradicts (2.2). Therefore only of¥ K)

is nonempty. Since the union of dll(K)'s coincides withD, we obtain that this
D(K) coincides withD and (2.1). a

2.1)

Let z; and Z; be the infimum and supremum Ofx + d; over D fori =
1,2,...,p and let[z;, Z;] denote the closed interval betweenand Z; with
the convention that infinite endpoints are excluded. Then the above argument is
summarized in the following theorem.

THEOREM 25.1f O ¢ [z;, Z;]foralli = 1,2,..., p,thenD = D(K) for a
uniguek C {1,2,..., p}. If |K]| is odd, problemP reduces to a single concave
maximization problem, and j| is even, it reduces to proble® with all terms
c]x + d; positive onD by reversing the signs aof andd; fori € K. If 0 €

[zi, Z;] for somei, solving a number of concave maximization problems will yield
an optimal solution of problen®.

Therefore we will hereafter assume without loss of generality that
c/x+d; >0foralli=1,2,..., pandforallx € D.
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Under this assumption the objective functigins pseudoconcave ab (see Avriel
et al. [1]), which implies the existence of an optimal solutionffamong the
vertices ofD.

3. Benson-Boger’s heuristic

Exploiting the property that an optimal solution Bfis an efficient vertex of the
multicriteria problemM C, Benson and Boger [2] proposed a heuristic method. Let
d = (di,dy, ... ,d,)T and forw, y € R” let Q(w, y) be the linear program

minimize wTCx

Q(w, y) subjecttox € D; Cx +d < y.

Then their method is outlined as follows.

Benson—-Boger’s Heuristic Method
Step 1
findy =y, ....y,)andy =(y,.... ’Xp) such that
y < Cx +d < y holds for anyx € D;
solve maxa |a > 0;x € D; Cx +d <y + a(y —y)} to yield
an optimal solutior(x*, a*); B
ey t+at(y —y);
o=y 4+ (/)G —y)forj=0,1,...,5;
choose an appropriate positive valug
wl <~ (1,1,...,DT;
wl < (w,1,...,D7,...,w?P <~ L1 ..., 0)7;
Step 2
for all combinations ofv* andy’ do
solve Q (w*, y/) to yield an optimal solutiof*’ ;
find an efficient facer*/ containingf"f of D;
solve mi{(V £ (x"))Tx | x € 0¥/} to yield an optimal solutio*/;
end for
Step 3
(k*, j*) <= argmin_q . j_o... ., f(EY)
R

The pointx in Step 3 is the approximate solution provided by the method.
Sincew* is a positive weight vector, the solutiaft’ of Q(w*, y/) is an efficient
point (see Steuer [14]) aD. Then an efficient face, a face consisting of efficient
points,o* containingx® is searched for and a solution, which is a vertexof
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of min{(Vfx"))Tx|x e o/} is stored as a candidate for the solution. The key
lemma of Benson—-Boger [2] for finding an efficient face is as follows.

LEMMA 3.1 (Benson—Boger [2], Theorem 3.3)etx* be an optimal solution of
Q(wk, y/) and lety := Cx* + d. Letu be a dual optimal solution of (w*, y)
corresponding to the constraintx + d < y. Theno® = {x|x € D; (w* +
0)TCx = (w* +w)TCx%} is an efficient face containing .

Finding an efficient face according to this lemma will not cost much because
0wk, y) differs from Q (w*, y/), which has already been solved, in only the right
hand side constant vector. This will contribute to the efficiency of the method. But
roughly speaking, the total of 8+ 1)(p + 1) linear programs are solved to obtain
an approximate solutiof.

To see how small the face"/ can be, let(v, ) be a dual optimal solution of
Q(w*,y), i.e., (v, u) solves

maximize —bTv — (y —d)Tu
subject to ATv + CTu = —CTw*
v>0; u>0.

Letx” be a point of the face*/, then
DTAX = —(w* +0)TCx' = —(w* +W)TCxY = vT ATV,

Sincey = Cx" +d, and henc&" remains optimal to probler® (w*, ¥), the com-
plementarity of slackness holds betwaghand (v, ). Hence we haveT (Ax" —
b) = 0. This together with the above equation implies

vTAx = 77h.

Therefore, if the strict complementarity of slackness holds betwéeandv, x’
satisfies by equality all the constraints bindingdt Namely

o* C {x|x € D; a] x = b; for all constraints binding atx*/},

wherea! denotes théth row of A, andb; denotes théth element ob. Particularly,
whenx" is a vertex ofD, it is likely thato* ends up to be the zero-dimensional
face consisting of* alone.

The higher the dimension of the efficient face to be found is, the wider the region
we can search for an efficient vertex. Therefore the way of finding an efficient face
would be room for improvement of Benson—-Boger’s heuristic method.
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4. Efficient face search heuristic

Let e be ap-dimensional positive vector and consider the linear system

ATv+CTlu=0,v=>0; u >e. 4.1)

LEMMA 4.1. For a solution(v, u) of (4.1) leto be a face oD defined by
o :={x|x € D; a'x = b; for i such thaw; > 0},

whereqd] is theith row of A andb; is theith component ab. Theno is an efficient
face, i.e., every point ef is an efficient point of MC.

Proof. We shall show that every poiitof o is an optimal solution of
minimize u™Cx
subject to Ax < b.

Clearlyv is a feasible solution of the dual problem

maximize —bTv
subjectto ATv+ CTu=0; v > 0,

and from the definition of we see that together withv satisfies the complement-

arity of slackness condition’ (Ax — ») = 0. Thereforex is an optimal solution of

the above primal linear program. Singés a positive vectory is an efficient point

of MC (see Steuer [14]). O
From the viewpoint of widening the search region for an approximate solution

of P, the higher dimensional faeewould be more desirable. Namely, the number

of positive components af should be as small as possible. Therefore we propose

to solve the following linear program to obtain an efficient face.

minimize > /L, v;
subjecttoATv+CTu =0, v>0; u > e.

Now we are ready to describe our heuristic method.

Heuristic method
Step 1
choose an appropriate positive valug
wl <~ (1,1,...,DT;
wl <~ (w,1,...,D7,...,w?P <L 1..., 07
Step 2
for all w* do
solve mif{(w*)TCx | Ax < b} to yield an optimal solutiofr*;
JE < {ili €e{1,2,...,m}; a]x* = b;};
solve min) ;e vil D jex viai +CTu=0; v; > 0; u >e}to
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yield an optimal solution@*, u*);

JF—{ilieJk T >0}

of —{x|xeD; alx=bforiec Jky:

solve mi{(V £ (x*))Tx | x € o} to yield an optimal solutior*;

end for
Step 3
k* <argmin_o_. ,f(x*)
X« 7
In Step 1 weight vectors)®, w!, ..., w” are chosen in the same manner as
Benson and Boger proposed. We sojve- 1 linear programs in Step 2 to yield
x°, ..., x” and set/* be the index set of binding constraintsxt A higher di-

mensional efficient face is searched for by solving another linear program, and then
(V f£(x*))Tx is minimized on the face to obtain a candidate solufibnTherefore
we solve 3p + 1) linear programs to obtain an approximate solution

Although we aim at minimizing the number of positive components‘oby
minimizing ), _,« v; in Step 2, it does not always work, which stimulates us to an
improvement. In the modified heuristic method we keep the best candidate solution
asx*”, and then for allj € J** we check if there is an efficient face whose binding
constraints have indices iﬁ‘*\{j}. Then we minimize(Vf(f"*))Tx on the face to
be found.

We carried out a preliminary experiment for the modification in which the
minimization oniejk\{j} v; isdone forallj Jandforallk = 0,1, ... , p. Al-
though this modification produced by far more candidate solutions than the above
heuristic method, it requires solving additionak2_?_, |J¥| of linear programs.

In most of the instances tested in the experiment the best approximate solutions
were found among the candidatés’ generated from/*"\{;}, wherek* is the

index such thaf(i"*) = MiN=01,.. £ (&%), Therefore we propose the following
modification, that is, doing Step 4 foi*" alone. The computational experiments
will show that the modification is worth doing when a more accurate approximate
solution is desired.

Modified heuristic method
Step 1
choose an appropriate positive valug
wl <~ (1,1,...,DT;
wl <~ (w,1,...,D7,...,w?P <~ L 1..., 0)7;
Step 2
for all w* do
solve mif{(w*)TCx | Ax < b} to yield an optimal solutiofr*;
JE—dilie{l,2,... ,m};a]x* = b;);
solve min) i« vi|l Y ;e viai +CTu=0; v; >0; u > e}to
yield an optimal solution(v*, 7*);
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T —{ilieJ* T >0y
of < {x|x e D; alx = b, fori e J*};
solve mi{(V £ (x*))Tx | x € o*} to yield an optimal solutiof*;
end for
Step 3
k* <argmin_o,.. ,f(x")
Step 4
forall j € J¥ do
solve Mir(}_, s\ (jy Vi | Dicjiryjy vigi +CTu=0;v; > 0ju > e} to
yield an optimal solution@*"/, w*"/);
T —ilie J¥ 05 > o
0¥l «— {x|x € D;alx = b; fori e J¥'7};
solve mi(V f(x*"))Tx|x € o*"/} to yield an optimal solutiof*"/;
end for
Step 5
let ¥ be the point that attains miiff (x*"), min; _ e FEFITY)

5. Computational experiments

We wrote a code in C for our heuristic method and modified heuristic method, and
carried out the experiment on HP Apollo Model 715/75. The linear program solver
we used is LPAKO ver.4.0f provided by Park [12]. Following Benson-Boger’s way
of experiment in [2] we generated 240 problem instances. Namely we set

D={x|Tx>t; 1<x;<iforj=1,2...,n},

whereT = (1;) is anm x n matrix whose elements are randomly chosen from
{1,2,...,10}, t is anm-dimensional vector whosgh component is defined by
t, = Z’]’.Zl tl%-, andf = max_j» ... t. We generated the coefficient vectoysof

the objective functiory by randomly drawing elements from the §&t2, ... , 10}
and we set/; = 0 for all i. We usedw = 9 to generatep + 1 weight vectors
wk in Step 1 for the both methods. To find an optimal solution of probRrve
enumerated all of the efficient vertices of probldfitT by ADBASE developed by
Steuer [15,16].

The numerical results for the heuristic method and the modified heuristic method
are shown in the Tables | and Il. Each row of the tables gives average statistics
of ten problem instances except for the sixth and seventh columns. The fourth
columnefficientgives the average number of efficient vertices found by ADBASE.
As proposed in Benson-Boger [2], to evaluate the approximate solution obtained
we use the efficiency ratingdefined by

_ Zmax—Z

’

Zmax — Zmin
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Table I. Computational results for heuristic method

p m n efficient r 'best rworst time

2 25 20 21.7 0.999997 1 0.999992 0.21
25 30 17.0 0999934 1 0.999890 0.36
30 40 24.1 0.998704 1 0.969217 0.69
40 30 33.0 0.999578 0.999951 0.997889 0.57
40 50 28.5 0.999273 0.999997 0.992651 1.62

50 40 38.3 0.999019 0.999917 0.997966 1.43
50 60 45.6 0.985371 0.999062 0.916732 3.67
60 70 55.9 0940832 1 0.886512 6.82

3 25 20 331.0 0.999948 1.000000 0.999777 0.28
25 30 756.4 0.999135 0.999992 0.995413 0.35
30 40 681.3 0.995911 0.999597 0.990016 1.06
40 30 727.3 0.999028 1.000000 0.995499 0.79
40 50 1809.0 0.989379 0.999441 0.918471 1.67
50 40 1645.7 0.990051 0.999010 0.989852 1.38
50 60 2332.3 0.974496 0.991431 0.899949 3.81

4 25 20 1789.7 0.999186 1.000000 0.993378 0.28
25 30 6732.2 0.995488 0.999687 0.990098 0.94
30 40 13618.7 0.999766 1 0.994115 0.99
40 30 17645.0 0.990003 0.999344 0.941095 0.96
40 50 20234.5 0.992779 0.998805 0.990076 2.13
50 40 33192.1 0.963425 0.997352 0.903949 1.71

5 10 20 843.7 0.998356 0.999901 0.975573 0.27
20 10 452.0 0.974928 0.997666 0.948753 0.15
25 30 24815.6 0.899201 0.967415 0.844599 1.93

wherez is f(x), the objective function value of the approximate solution obtained
by each of our methods, angax andzmin are the maximum and minimum object-
ive function values, respectively among efficient vertices of probMidi. Note

that zmin is the optimal value ofP and that the closer i§ to znmin, the closer is

the efficiency rating: to 1. The average efficiency ratings are shown in the fifth
column under. The best and worst efficiency ratings of ten instances are shown
in the sixth and seventh columns undgss: and ryorst. We write rpest = 1 When

Z = Zmin, I.€., the method provides an exact optimal solution, which should be
distinguished fromypes; = 1.000000 meaningll — rpes{ < 107, We will use the
same notation in Table Il. The last colunime gives the average CPU time in
seconds that the heuristic method needed.
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Table Il. Computational results for modified heuristic method

p m n efficient r best rworst time rpp

2 25 20 21.7 1.000000 1 1.000000 0.25 1.000
25 30 17.0 0.999995 1 0.999988 0.42 1.000
30 40 24.1 1.000000 1 0.999992 0.78 1.000
40 30 33.0 0.999997 1.000000 0.999982 0.61 0.999
40 50 28.5 0.999991 1.000000 0.999935 1.66 1.000
50 40 38.3 0.999936 0.999992 0.999893 1.45 0.999
50 60 456 0.998955 0.999654 0.976732 4.17 1.000
60 70 55.9 0.992580 1 0.916112 7.45 1.000

3 25 20 331.0 0.999991 1.000000 0.999987 0.34 0.985
25 30 756.4 0.999935 1.000000 0.999881 0.39 0.960
30 40 681.3 0.999802 0.999966 0.997695 1.22 0.987
40 30 727.3 0.999971 1.000000 0.999517 0.91 0.993
40 50 1809.0 0.997156 0.999755 0.941718 2.02 0.920
50 40 1645.7 0.998923 0.999181 0.990021 1.68 0.993
50 60 2332.3 0.992008 0.999439 0.945631 4.26 0.995

4 25 20 1789.7 0.999912 1.000000 0.999548 0.38 0.998
25 30 67322 0.999022 0.999973 0.997893 1.11 0.992
30 40 13618.7 0.999941 1 0.999869 1.25 0.986
40 30 17645.0 0.997706 0.999512 0.942831 1.19 0.978
40 50 202345 0.998237 0.999945 0.991421 2.17 0.968
50 40 33192.1 0.990254 0.999070 0.959515 1.84 0.969

5 10 20 843.7 0.999344 0.999994 0.996888 0.29 0.993
20 10 452.0 0.991058 0.999159 0.977657 0.16 0.998
25 30 248156 0.958771 0.987431 0.896523 2.23 0.995

Table Ill. Computational results for larger problems

p m n  (@h—2/z (Emh—2/z (@BB—2)/2

2 70 80 0.2587 0.0000 28.2708
80 90 0.1407 0.0069 0.6644

3 60 70 0.6680 0.0000 2.1154
70 80 3.1909 0.0957 8.8030

4 50 60 1.3577 0.5232 0.7096
60 70 2.3446 0.0848 4.4663

5 30 40 1.3143 0.0000 4.5893
40 50 0.2564 0.0000 1.9552

443
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We observe in Table | that the quality of the approximate solutions obtained
deteriorates slightly as the size of problem increases. But the average efficiency
ratings and even the worst efficiency ratings are very close to 1.0 irrespeciwe of
as long as the problem size is relatively small. Note also that the growth of CPU
time is very mild with the increase of problem size.

The result of the modified heuristic method for the same problem instances is
shown in Table Il, where we see better efficiency ratings than those in Table I. The
efficiency ratings reported in Benson-Boger [2] are also given in the right most
column underrgg. Benson-Boger’s heuristic method performs quite well when
p = 2. Iltaccounts for this phenomenon that their method could be viewed as apply-
ing the parametric method proposed in Appendix for discrete values of parameter
a. See Theorem A.1. Note that the problem instances solved here, though generated
in the same manner, are not identical to those in Benson-Boger [2]. Hence simple
comparison should not lead to any conclusion.

To compare the efficiency of the methods for larger problems, we generated ad-
ditional 80 problem instances of larger size in the same manner. Since the problem
instances are too large to apply ADBASE to enumerate all the efficient vertices,
instead of the efficiency rating we compared the objective function valyesn
andzgg Yyielded by the three methods: heuristic method, modified heuristic method
and Benson-Boger's method. We get= min{zy, zmn, zgg} and show in Table IlI
the average statistics of relative err@eg — z)/z, (zmh — 2)/z and (zgs — 2)/z
for ten problem instances except for the case mfm, n) = (2, 70,80) where,
eliminating an outlier, the averages for nine instances are reported. Note that the
column of(z,,, — z)/z contains a good many zeroes. This means that the modified
heuristic method provided the best solution for almost all problem instances and
hence its superiority over the other two methods.
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Appendix

We will propose a new parametric method that yields an optimal solution for
problemP whenp = 2.

Suppose that each tewyx + d; is bounded orD fori = 1,2, ..., p and lety
andy be p-dimensional vectors such that< Cx +d < y holds for allx € D. For
anonempty subset C {1,2, ..., p} and fora € [0, 1] let us consider the vector
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Figure 1. Parametric method faP with p = 2.
minimization problem
P () vector minimize C;x
AS subject to x € D; Cx—i—dg(l—a)i—l—ozz,

whereC; is the matrix of row&} forj e J.

LEMMA A.1. Every optimal solution of is an efficient point of; («) for some
nonempty proper subsédtof {1, 2, ... , p} and for somex € [0, 1].
Proof. Letx* be an optimal solution of and let

o :=maXa | Cx* +d < (1—a)y +ay}.

Then clearlye™ € [0, 1] andC,x* +dy = (1 — o™y, + ot*Xj,, holds for some
nonempty subsef’ of {1, 2,..., p}, whered,, y; and Y, denote the vectors
consisting of thejth components forj € J' of d, y and y, respectively. Let
Jbe{1,2,...,p}\J whenJ' # {1,2,...,p}, an arbitrary proper subset of
{1,2,...,p}whenJ’ = {1,2,..., p} and suppose™ is not an efficient point
of P;(a*). Namely, we suppose there is a poite D such thatCx + d <
1- Ol*)y+()l*y, C;x < Cyx*andC,x = Cyx*. SinceCyx +dy < Cpx*+dy
by the definition ofx*, this clearly leads to a contradiction. O
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When p = 2, the multicriteria problemP; («) reduces to an ordinary linear
program and we obtain the following theorem.

THEOREM A.1.Whenp = 2, an optimal solution of is among the vertices to
be encountered while solving the two parametric linear programnfiage) and

P{z} (O{)

This theorem provides us with a new parametric approach to a solutiéhfof
p=2.

New parametric method
Step 1
fori =1and 2do
solve Py (o) parametrically fok € [0, 1] and store the vertices
to be encountered
end for
Step 2
evaluate the functiorf at the vertices and choose one with the
minimum value

The figure illustrates the case of two-dimension, where the bold arrows show
cf andcj). Solving Py, («) parametrically, one yields the vertices denoted by a
circle, while the vertices denoted by a square are enumerated in sahirg).
The triangle shows the point where the both parametric linear programs end up.
Whenp > 2, solving everp parametric linear programs will not always provide
an optimal solution ofP. As Theorem A.1 shows, if one enumerates all efficient
points for every nonempty proper subsebof {1, 2, ..., p} and for every value
of parameterr, one would obtain an optimal solution among the vertices to be
enumerated.
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