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Abstract. The linear multiplicative programming is the minimization of the product of affine func-
tions over a polyhedral set. The problem with two affine functions reduces to a parametric linear
program and can be solved efficiently. For the objective function with more than two affine func-
tions multiplied, no efficient algorithms that solve the problem to optimality have been proposed,
however Benson and Boger have proposed a heuristic algorithm that exploits links of the problem
with concave minimization and multicriteria optimization. We will propose a heuristic method for
the problem as well as its modification to enhance the accuracy of approximation. Computational
experiments demonstrate that the method and its modification solve randomly generated problems
within a few percent of relative error.

1. Introduction

The linear multiplicative programming is the minimization of the product ofp

affine functionscᵀi x + di over a polyhedral setD, i.e.,

P

∣∣∣∣ minimize f (x) =∏p

i=1 (c
ᵀ
i x + di)

subject to x ∈ D,

whereD := {x|x ∈ Rn;Ax 6 b} is the polyhedral set defined by the system of
m linear inequalitiesAx 6 b. As will be seen in the next section, we can assume
without loss of generality that thep affine functionscᵀi x + di are positive onD.

Whenp = 2, problemP has been extensively investigated by, for example,
Swarup [17–19], Forgo [3,4], Konno-Kuno-Yajima [5], Konno-Kuno [6,7] and
proved to beNP -hard by Matsui [10] (see also Pardalos-Vavasis [11]). The al-
gorithms proposed in these papers are mainly based on the fact that an optimal
solution ofP is among the vertices to be encountered while solving the parametric
linear program∣∣∣∣ minimize θ(c

ᵀ
1x + d1)+ (1− θ)(cᵀ2x + d2)

subject to x ∈ D
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for θ ∈ [0,1] or∣∣∣∣ minimize c
ᵀ
1x + d1

subject to x ∈ D; cᵀ2x + d2 = η
for η > 0.

For problemP with p > 2 there have been proposed several algorithms by, for
example, Thoai [20], Kuno-Yajima-Konno [9], Ryoo-Sahinidis [13] and Kuno [8].
See also Tuy [21] for the dimension reduction technique by dualization. Thoai [20]
exploited the equivalence between problemP and problem∣∣∣∣∣∣

minimize
∏p

i=1 yi
subject to x ∈ D

c
ᵀ
i x + di 6 yi for i = 1,2, . . . , p,

called the master problem. If one knows the set, sayY , of pointsy ∈ Rp such
that (x, y) is a feasible solution of the master problem for somex ∈ Rn, problem
P clearly reduces to the minimization of

∏p

i=1 yi on Y . He proposed an outer
approximation method which enumerates the linear inequalities definingY . The
master problem considered by Kuno, Yajima and Konno [9] is∣∣∣∣ minimize

∑p

i=1 ξi(c
ᵀ
i x + di)

subject to x ∈ D.
Let h(ξ) be the optimal value of this problem forξ ∈ Rp and let4 := {ξ |ξ ∈
Rp; ξ > 0; ∏p

i=1 ξi > 1}. They showed the reduction of problemP to the
minimization ofh(ξ) on 4 and developed an outer approximation method. The
methods of Ryoo and Sahinidis [13] and of Kuno [8] are based on the combination
of branch-and-bound and cutting plane methods.

Let C be thep × n matrix of rowscᵀi for i = 1,2, . . . , p and consider the
following multicriteria problem (see for example Steuer [14]).

MC

∣∣∣∣ vector minimizeCx
subject to x ∈ D.

Then clearly an optimal solution ofP is an efficient point of problemMC, where a
pointx ∈ D is said to beefficientif there is no pointx ∈ D such thatCx 6 Cx and
Cx 6= Cx. Together with the pseudoconcavity of the objective functionf (see the
next section), we see that there is an optimal solution ofP among the efficient
vertices ofD. Exploiting this property, Benson-Boger [2] proposed a heuristic
method for problemP , which they named theefficient point search heuristic.
Their computational experiment for randomly generated problems supports that
their method efficiently provides fairly good approximate solutions of rather large
problems forp = 2, 3, 4, and 5.

In this paper we will propose a heuristic algorithm and its modification to en-
hance the accuracy of approximate solutions to be obtained. In Section 2 we show
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that the assumption thatcᵀi x + di > 0 for all x ∈ D does not deteriorate the
generality of the problem. After introducing Benson-Boger’s method in Section 3,
we propose a heuristic methodefficient face search heuristicin Section 4 as well
as its modification. In Section 5 some computational results will be reported. Some
remarks will be given in the last section.

2. Assumption

For a subsetK of {1,2, . . . , p} let |K| denote the number of indices ofK and let

D(K) :=
x

∣∣∣∣∣∣
x ∈ D
c
ᵀ
i x + di 6 0 for i ∈ K
c
ᵀ
i x + di > 0 for i /∈ K

 .
Clearly problemP reduces to the family of problemsP(K):

P(K)

∣∣∣∣ minimize
∏p

i=1 (c
ᵀ
i x + di)

subject to x ∈ D(K).

If |K| is odd, the objective function takes a nonpositive value onD(K), while a
nonnegative value onD(K) if |K| is even. Therefore to find a globally optimal
solution ofP , we have only to solve problemsP(K) for K of odd cardinality
which is rewritten as∣∣∣∣ maximize (

∏
i∈K −(cᵀi x + di))× (

∏
i /∈K(c

ᵀ
i x + di))

subject to x ∈ D(K).

LEMMA 2.1. Suppose|K| is odd. Then the optimal value ofP(K) is zero if and
only if there is ani ∈ {1,2, . . . , p} such thatcᵀi x + di = 0 for all x ∈ D(K).

Proof. The ‘if’ part is trivial. To show the ‘only if’ part, suppose the contrary,
that is, for eachi ∈ {1,2, . . . , p} there is a pointxi ∈ D(K) such thatcᵀi x

i + di 6=
0. Letx be their barycenter(1/p)

∑p

i=1 x
i . Then one readily sees thatx ∈ D(K),

c
ᵀ
i x + di < 0 for i ∈ K andcᵀi x + di > 0 for i /∈ K. This implies the negative

optimal value ofP(K), and consequently a contradiction. �

Note that whetherD(K) is contained in{x | cᵀi x + di = 0} for somei ∈
{1,2, . . . , p} can be readily checked by solving at mostp linear programs. When
this does not occur, an equivalent form of problemP(K) would be∣∣∣∣ maximize

∑
i∈K log(−(cᵀi x + di))+

∑
i /∈K log(cᵀi x + di)

subject to x ∈ D(K).



436 X.J. LIU, T. UMEGAKI AND Y. YAMAMOTO

By virtue of the monotonicity and concavity of the logarithmic function this is a
concave maximization problem, which is rather an easy problem to solve globally.
To sum up, we obtain

LEMMA 2.2. If D(K) 6= ∅ for someK of odd cardinality, problemP reduces to a
number of concave maximization problems,

and we will assume throughout this paper that

ASSUMPTION 2.3.D(K) = ∅ for everyK of odd cardinality.

LEMMA 2.4. Under Assumption 2.3,D = D(K) for a unique subsetK ⊆
{1,2, . . . , p} of even cardinality. Moreover

D ⊆
{
x

∣∣∣∣ cᵀi x + di < 0 for i ∈ K
c
ᵀ
i x + di > 0 for i /∈ K

}
. (2.1)

Proof. From Assumption 2.3 there is aK ⊆ {1,2, . . . , p} of even cardinality
with nonemptyD(K). If there is a pointx ∈ D(K) satisfyingcᵀi x + di = 0 for
somei ∈ K, then it belongs also toD(K\{i}). This implies thatD(K\{i}) 6= ∅ and
contradicts Assumption 2.3. Ifcᵀi x+ di = 0 for somei /∈ K, thenx ∈ D(K ∪ {i}).
This is again a contradiction. Therefore for anyx ∈ D(K) we obtain

c
ᵀ
i x + di < 0 for i ∈ K, cᵀi x + di > 0 for i /∈ K. (2.2)

Next suppose thatK 6= K ′ andD(K) andD(K ′) are both nonempty. Choose
arbitrarily pointsx ∈ D(K) and x′ ∈ D(K ′). Then the line segment[x, x′]
connecting them contains a pointz of D(K) which satisfiescᵀi z + di = 0 for
somei ∈ (K\K ′) ∪ (K ′\K). This contradicts (2.2). Therefore only oneD(K)
is nonempty. Since the union of allD(K)’s coincides withD, we obtain that this
D(K) coincides withD and (2.1). �

Let zi andZi be the infimum and supremum ofcᵀi x + di over D for i =
1,2, . . . , p and let [zi, Zi] denote the closed interval betweenzi and Zi with
the convention that infinite endpoints are excluded. Then the above argument is
summarized in the following theorem.

THEOREM 2.5.If 0 /∈ [zi, Zi] for all i = 1,2, . . . , p, thenD = D(K) for a
uniqueK ⊆ {1,2, . . . , p}. If |K| is odd, problemP reduces to a single concave
maximization problem, and if|K| is even, it reduces to problemP with all terms
c
ᵀ
i x + di positive onD by reversing the signs ofci and di for i ∈ K. If 0 ∈
[zi, Zi] for somei, solving a number of concave maximization problems will yield
an optimal solution of problemP .

Therefore we will hereafter assume without loss of generality that

c
ᵀ
i x + di > 0 for all i = 1,2, . . . , p and for allx ∈ D.
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Under this assumption the objective functionf is pseudoconcave onD (see Avriel
et al. [1]), which implies the existence of an optimal solution ofP among the
vertices ofD.

3. Benson–Boger’s heuristic

Exploiting the property that an optimal solution ofP is an efficient vertex of the
multicriteria problemMC, Benson and Boger [2] proposed a heuristic method. Let
d = (d1, d2, . . . , dp)

ᵀ and forw, y ∈ Rp letQ(w, y) be the linear program

Q(w, y)

∣∣∣∣ minimize wᵀCx
subject to x ∈ D; Cx + d 6 y.

Then their method is outlined as follows.

Benson–Boger’s Heuristic Method
Step 1

find y = (y1, . . . , yp) andy = (y
1
, . . . , y

p
) such that

y 6 Cx + d 6 y holds for anyx ∈ D;
solve max{α |α > 0; x ∈ D; Cx + d 6 y + α(y − y)} to yield
an optimal solution(x∗, α∗);
y∗ ← y + α∗(y − y);
yj ← y∗ + (j/s)(y − y∗) for j = 0,1, . . . , s;
choose an appropriate positive valueω;
w0← (1,1, . . . ,1)ᵀ;
w1← (ω,1, . . . ,1)ᵀ, . . . , wp ← (1,1, . . . , ω)ᵀ;

Step 2
for all combinations ofwk andyj do

solveQ(wk, yj ) to yield an optimal solutionxkj ;
find an efficient faceσ kj containingxkj of D;
solve min{(∇f (xkj ))ᵀx | x ∈ σ kj } to yield an optimal solutioñxkj ;

end for
Step 3
(k∗, j ∗)← argmink=0,... ,p; j=0,... ,sf (x̃

kj )

x̃ ← x̃k
∗j∗

The point x̃ in Step 3 is the approximate solution provided by the method.
Sincewk is a positive weight vector, the solutionxkj of Q(wk, yj ) is an efficient
point (see Steuer [14]) ofD. Then an efficient face, a face consisting of efficient
points,σ kj containingxkj is searched for and a solution, which is a vertex ofD,
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of min{(∇f (xkj ))ᵀx|x ∈ σ kj } is stored as a candidate for the solution. The key
lemma of Benson–Boger [2] for finding an efficient face is as follows.

LEMMA 3.1 (Benson–Boger [2], Theorem 3.3).Letxkj be an optimal solution of
Q(wk, yj ) and lety := Cxkj + d. Letu be a dual optimal solution ofQ(wk, y)
corresponding to the constraintCx + d 6 y. Thenσ kj := {x | x ∈ D; (wk +
u)ᵀCx = (wk + u)ᵀCxkj } is an efficient face containingxkj .

Finding an efficient face according to this lemma will not cost much because
Q(wk, y) differs fromQ(wk, yj ), which has already been solved, in only the right
hand side constant vector. This will contribute to the efficiency of the method. But
roughly speaking, the total of 3(s + 1)(p+ 1) linear programs are solved to obtain
an approximate solutioñx.

To see how small the faceσ kj can be, let(v, u) be a dual optimal solution of
Q(wk, y), i.e.,(v, u) solves∣∣∣∣∣∣

maximize −bᵀv − (y − d)ᵀu
subject to Aᵀv + Cᵀu = −Cᵀwk

v > 0; u > 0.

Let x′ be a point of the faceσ kj , then

vᵀAx′ = −(wk + u)ᵀCx′ = −(wk + u)ᵀCxkj = vᵀAxkj .
Sincey = Cxkj+d, and hencexkj remains optimal to problemQ(wk, y), the com-
plementarity of slackness holds betweenxkj and(v, u). Hence we havevᵀ(Axkj −
b) = 0. This together with the above equation implies

vᵀAx′ = vᵀb.
Therefore, if the strict complementarity of slackness holds betweenxkj andv, x′
satisfies by equality all the constraints binding atxkj . Namely

σ kj ⊆ {x | x ∈ D; aᵀi x = bi for all constraintsi binding atxkj },
whereaᵀi denotes theith row ofA, andbi denotes theith element ofb. Particularly,
whenxkj is a vertex ofD, it is likely that σ kj ends up to be the zero-dimensional
face consisting ofxkj alone.

The higher the dimension of the efficient face to be found is, the wider the region
we can search for an efficient vertex. Therefore the way of finding an efficient face
would be room for improvement of Benson–Boger’s heuristic method.



HEURISTIC METHODS FOR LINEAR MULTIPLICATIVE PROGRAMMING 439

4. Efficient face search heuristic

Let e be ap-dimensional positive vector and consider the linear system

Aᵀv + Cᵀu = 0; v > 0; u > e. (4.1)

LEMMA 4.1. For a solution(v, u) of (4.1) letσ be a face ofD defined by

σ := {x | x ∈ D; aᵀi x = bi for i such thatvi > 0},
whereaᵀi is theith row ofA andbi is theith component ofb. Thenσ is an efficient
face, i.e., every point ofσ is an efficient point of MC.

Proof. We shall show that every pointx of σ is an optimal solution of∣∣∣∣ minimize uᵀCx
subject toAx 6 b.

Clearlyv is a feasible solution of the dual problem∣∣∣∣ maximize −bᵀv
subject to Aᵀv + Cᵀu = 0; v > 0,

and from the definition ofσ we see thatx together withv satisfies the complement-
arity of slackness conditionvᵀ(Ax − b) = 0. Thereforex is an optimal solution of
the above primal linear program. Sinceu is a positive vector,x is an efficient point
of MC (see Steuer [14]). �

From the viewpoint of widening the search region for an approximate solution
of P , the higher dimensional faceσ would be more desirable. Namely, the number
of positive components ofv should be as small as possible. Therefore we propose
to solve the following linear program to obtain an efficient face.∣∣∣∣ minimize

∑m
i=1 vi

subject toAᵀv + Cᵀu = 0; v > 0; u > e.
Now we are ready to describe our heuristic method.

Heuristic method
Step 1

choose an appropriate positive valueω;
w0← (1,1, . . . ,1)ᵀ;
w1← (ω,1, . . . ,1)ᵀ, . . . , wp ← (1,1, . . . , ω)ᵀ;

Step 2
for all wk do

solve min{(wk)ᵀCx |Ax 6 b} to yield an optimal solutionxk;
J k ← {i|i ∈ {1,2, . . . , m}; aᵀi xk = bi};
solve min{∑i∈J k vi |

∑
i∈J k viai + Cᵀu = 0; vi > 0; u > e} to
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yield an optimal solution(vk, uk);
Ĵ k ← {i | i ∈ J k; vki > 0};
σ k ← {x | x ∈ D; aᵀi x = bi for i ∈ Ĵ k};
solve min{(∇f (xk))ᵀx | x ∈ σ k} to yield an optimal solutioñxk ;

end for
Step 3
k∗ ←argmink=0,... ,pf (x̃

k)

x̃ ← x̃k
∗

In Step 1 weight vectorsw0, w1, . . . , wp are chosen in the same manner as
Benson and Boger proposed. We solvep + 1 linear programs in Step 2 to yield
x0, . . . , xp and setJ k be the index set of binding constraints atxk. A higher di-
mensional efficient face is searched for by solving another linear program, and then
(∇f (xk))ᵀx is minimized on the face to obtain a candidate solutionx̃k. Therefore
we solve 3(p + 1) linear programs to obtain an approximate solutionx̃.

Although we aim at minimizing the number of positive components ofvk by
minimizing

∑
i∈J k vi in Step 2, it does not always work, which stimulates us to an

improvement. In the modified heuristic method we keep the best candidate solution
asx̃k

∗
, and then for allj ∈ Ĵ k∗ we check if there is an efficient face whose binding

constraints have indices in̂J k
∗\{j}. Then we minimize(∇f (xk∗))ᵀx on the face to

be found.
We carried out a preliminary experiment for the modification in which the

minimization of
∑

i∈Ĵ k\{j} vi is done for allj ∈ Ĵ k and for allk = 0,1, . . . , p. Al-
though this modification produced by far more candidate solutions than the above
heuristic method, it requires solving additional 2×∑p

k=0 |Ĵ k| of linear programs.
In most of the instances tested in the experiment the best approximate solutions
were found among the candidatesx̃k

∗j generated fromĴ k
∗\{j}, wherek∗ is the

index such thatf (x̃k
∗
) = mink=0,1,... ,p f (x̃

k). Therefore we propose the following
modification, that is, doing Step 4 for̂J k

∗
alone. The computational experiments

will show that the modification is worth doing when a more accurate approximate
solution is desired.

Modified heuristic method
Step 1

choose an appropriate positive valueω;
w0← (1,1, . . . ,1)ᵀ;
w1← (ω,1, . . . ,1)ᵀ, . . . , wp ← (1,1, . . . , ω)ᵀ;

Step 2
for all wk do

solve min{(wk)ᵀCx |Ax 6 b} to yield an optimal solutionxk;
J k ← {i | i ∈ {1,2, . . . , m}; aᵀi xk = bi};
solve min{∑i∈J k vi |

∑
i∈J k viai + Cᵀu = 0; vi > 0; u > e} to

yield an optimal solution(vk, uk);
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Ĵ k ← {i | i ∈ J k; vki > 0};
σ k ← {x | x ∈ D; aᵀi x = bi for i ∈ Ĵ k};
solve min{(∇f (xk))ᵀx | x ∈ σ k} to yield an optimal solutioñxk ;

end for
Step 3
k∗ ←argmink=0,... ,pf (x̃

k)

Step 4
for all j ∈ Ĵ k∗ do

solve min{∑i∈Ĵ k∗\{j} vi |
∑

i∈Ĵ k∗\{j} viai + Cᵀu = 0; vi > 0; u > e} to
yield an optimal solution(vk

∗j , uk
∗j );

Ĵ k
∗j ← {i | i ∈ Ĵ k∗; vk∗ji > 0};

σ k
∗j ← {x|x ∈ D; aᵀi x = bi for i ∈ Ĵ k∗j };

solve min{(∇f (xk∗))ᵀx|x ∈ σ k∗j } to yield an optimal solutioñxk
∗j ;

end for
Step 5

let x̃ be the point that attains min{f (x̃k∗), minj∈Ĵ k∗ f (x̃
k∗j )}

5. Computational experiments

We wrote a code in C for our heuristic method and modified heuristic method, and
carried out the experiment on HP Apollo Model 715/75. The linear program solver
we used is LPAKO ver.4.0f provided by Park [12]. Following Benson-Boger’s way
of experiment in [2] we generated 240 problem instances. Namely we set

D = {x | T x > t; 16 xj 6 t̂ for j = 1,2, . . . , n},
whereT = (tij ) is anm × n matrix whose elements are randomly chosen from
{1,2, . . . ,10}, t is anm-dimensional vector whoseith component is defined by
ti = ∑n

j=1 t
2
ij , andt̂ = maxi=1,2,... ,m ti . We generated the coefficient vectorsci of

the objective functionf by randomly drawing elements from the set{1,2, . . . ,10}
and we setdi = 0 for all i. We usedω = 9 to generatep + 1 weight vectors
wk in Step 1 for the both methods. To find an optimal solution of problemP we
enumerated all of the efficient vertices of problemMC by ADBASE developed by
Steuer [15,16].

The numerical results for the heuristic method and the modified heuristic method
are shown in the Tables I and II. Each row of the tables gives average statistics
of ten problem instances except for the sixth and seventh columns. The fourth
columnefficientgives the average number of efficient vertices found by ADBASE.
As proposed in Benson-Boger [2], to evaluate the approximate solution obtained
we use the efficiency ratingr defined by

r = zmax− z̃
zmax− zmin

,
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Table I. Computational results for heuristic method

p m n efficient r rbest rworst time

2 25 20 21.7 0.999997 1 0.999992 0.21

25 30 17.0 0.999934 1 0.999890 0.36

30 40 24.1 0.998704 1 0.969217 0.69

40 30 33.0 0.999578 0.999951 0.997889 0.57

40 50 28.5 0.999273 0.999997 0.992651 1.62

50 40 38.3 0.999019 0.999917 0.997966 1.43

50 60 45.6 0.985371 0.999062 0.916732 3.67

60 70 55.9 0.940832 1 0.886512 6.82

3 25 20 331.0 0.999948 1.000000 0.999777 0.28

25 30 756.4 0.999135 0.999992 0.995413 0.35

30 40 681.3 0.995911 0.999597 0.990016 1.06

40 30 727.3 0.999028 1.000000 0.995499 0.79

40 50 1809.0 0.989379 0.999441 0.918471 1.67

50 40 1645.7 0.990051 0.999010 0.989852 1.38

50 60 2332.3 0.974496 0.991431 0.899949 3.81

4 25 20 1789.7 0.999186 1.000000 0.993378 0.28

25 30 6732.2 0.995488 0.999687 0.990098 0.94

30 40 13618.7 0.999766 1 0.994115 0.99

40 30 17645.0 0.990003 0.999344 0.941095 0.96

40 50 20234.5 0.992779 0.998805 0.990076 2.13

50 40 33192.1 0.963425 0.997352 0.903949 1.71

5 10 20 843.7 0.998356 0.999901 0.975573 0.27

20 10 452.0 0.974928 0.997666 0.948753 0.15

25 30 24815.6 0.899201 0.967415 0.844599 1.93

wherez̃ is f (x̃), the objective function value of the approximate solution obtained
by each of our methods, andzmax andzmin are the maximum and minimum object-
ive function values, respectively among efficient vertices of problemMC. Note
that zmin is the optimal value ofP and that the closer is̃z to zmin, the closer is
the efficiency ratingr to 1. The average efficiency ratings are shown in the fifth
column underr. The best and worst efficiency ratings of ten instances are shown
in the sixth and seventh columns underrbest andrworst. We write rbest = 1 when
z̃ = zmin, i.e., the method provides an exact optimal solution, which should be
distinguished fromrbest= 1.000000 meaning|1− rbest| < 10−6. We will use the
same notation in Table II. The last columntime gives the average CPU time in
seconds that the heuristic method needed.
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Table II. Computational results for modified heuristic method

p m n efficient r rbest rworst time rBB

2 25 20 21.7 1.000000 1 1.000000 0.25 1.000

25 30 17.0 0.999995 1 0.999988 0.42 1.000

30 40 24.1 1.000000 1 0.999992 0.78 1.000

40 30 33.0 0.999997 1.000000 0.999982 0.61 0.999

40 50 28.5 0.999991 1.000000 0.999935 1.66 1.000

50 40 38.3 0.999936 0.999992 0.999893 1.45 0.999

50 60 45.6 0.998955 0.999654 0.976732 4.17 1.000

60 70 55.9 0.992580 1 0.916112 7.45 1.000

3 25 20 331.0 0.999991 1.000000 0.999987 0.34 0.985

25 30 756.4 0.999935 1.000000 0.999881 0.39 0.960

30 40 681.3 0.999802 0.999966 0.997695 1.22 0.987

40 30 727.3 0.999971 1.000000 0.999517 0.91 0.993

40 50 1809.0 0.997156 0.999755 0.941718 2.02 0.920

50 40 1645.7 0.998923 0.999181 0.990021 1.68 0.993

50 60 2332.3 0.992008 0.999439 0.945631 4.26 0.995

4 25 20 1789.7 0.999912 1.000000 0.999548 0.38 0.998

25 30 6732.2 0.999022 0.999973 0.997893 1.11 0.992

30 40 13618.7 0.999941 1 0.999869 1.25 0.986

40 30 17645.0 0.997706 0.999512 0.942831 1.19 0.978

40 50 20234.5 0.998237 0.999945 0.991421 2.17 0.968

50 40 33192.1 0.990254 0.999070 0.959515 1.84 0.969

5 10 20 843.7 0.999344 0.999994 0.996888 0.29 0.993

20 10 452.0 0.991058 0.999159 0.977657 0.16 0.998

25 30 24815.6 0.958771 0.987431 0.896523 2.23 0.995

Table III. Computational results for larger problems

p m n (zh − z)/z (zmh− z)/z (zBB − z)/z
2 70 80 0.2587 0.0000 28.2708

80 90 0.1407 0.0069 0.6644

3 60 70 0.6680 0.0000 2.1154

70 80 3.1909 0.0957 8.8030

4 50 60 1.3577 0.5232 0.7096

60 70 2.3446 0.0848 4.4663

5 30 40 1.3143 0.0000 4.5893

40 50 0.2564 0.0000 1.9552
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We observe in Table I that the quality of the approximate solutions obtained
deteriorates slightly as the size of problem increases. But the average efficiency
ratings and even the worst efficiency ratings are very close to 1.0 irrespective ofp

as long as the problem size is relatively small. Note also that the growth of CPU
time is very mild with the increase of problem size.

The result of the modified heuristic method for the same problem instances is
shown in Table II, where we see better efficiency ratings than those in Table I. The
efficiency ratings reported in Benson-Boger [2] are also given in the right most
column underrBB. Benson-Boger’s heuristic method performs quite well when
p = 2. It accounts for this phenomenon that their method could be viewed as apply-
ing the parametric method proposed in Appendix for discrete values of parameter
α. See Theorem A.1. Note that the problem instances solved here, though generated
in the same manner, are not identical to those in Benson-Boger [2]. Hence simple
comparison should not lead to any conclusion.

To compare the efficiency of the methods for larger problems, we generated ad-
ditional 80 problem instances of larger size in the same manner. Since the problem
instances are too large to apply ADBASE to enumerate all the efficient vertices,
instead of the efficiency rating we compared the objective function valueszh, zmh

andzBB yielded by the three methods: heuristic method, modified heuristic method
and Benson-Boger’s method. We setz := min{zh, zmh, zBB} and show in Table III
the average statistics of relative errors(zh − z)/z, (zmh − z)/z and (zBB − z)/z
for ten problem instances except for the case of(p,m, n) = (2,70,80) where,
eliminating an outlier, the averages for nine instances are reported. Note that the
column of(zmh − z)/z contains a good many zeroes. This means that the modified
heuristic method provided the best solution for almost all problem instances and
hence its superiority over the other two methods.
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Appendix

We will propose a new parametric method that yields an optimal solution for
problemP whenp = 2.

Suppose that each termcix + di is bounded onD for i = 1,2, . . . , p and lety
andy bep-dimensional vectors such thaty 6 Cx+d 6 y holds for allx ∈ D. For
a nonempty subsetJ ⊆ {1,2, . . . , p} and forα ∈ [0,1] let us consider the vector
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Figure 1. Parametric method forP with p = 2.

minimization problem

PJ (α)

∣∣∣∣ vector minimizeCJx
subject to x ∈ D; Cx + d 6 (1− α)y + αy,

whereCJ is the matrix of rowscᵀj for j ∈ J .

LEMMA A.1. Every optimal solution ofP is an efficient point ofPJ (α) for some
nonempty proper subsetJ of {1,2, . . . , p} and for someα ∈ [0,1].

Proof. Let x∗ be an optimal solution ofP and let

α∗ := max{α |Cx∗ + d 6 (1− α)y + αy}.

Then clearlyα∗ ∈ [0,1] andCJ ′x∗ + dJ ′ = (1− α∗)yJ ′ + α∗yJ ′ , holds for some
nonempty subsetJ ′ of {1,2, . . . , p}, wheredJ ′, yJ ′ and y

J ′ denote the vectors
consisting of thej th components forj ∈ J ′ of d, y and y, respectively. Let
J be {1,2, . . . , p}\J ′ when J ′ 6= {1,2, . . . , p}, an arbitrary proper subset of
{1,2, . . . , p} whenJ ′ = {1,2, . . . , p} and supposex∗ is not an efficient point
of PJ (α∗). Namely, we suppose there is a pointx̃ ∈ D such thatCx̃ + d 6
(1− α∗)y + α∗y, CJ x̃ 6 CJx∗ andCJ x̃ 6= CJx∗. SinceCJ ′ x̃ + dJ ′ 6 CJ ′x∗ + dJ ′
by the definition ofα∗, this clearly leads to a contradiction. �
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Whenp = 2, the multicriteria problemPJ (α) reduces to an ordinary linear
program and we obtain the following theorem.

THEOREM A.1.Whenp = 2, an optimal solution ofP is among the vertices to
be encountered while solving the two parametric linear programmingP{1}(α) and
P{2}(α).

This theorem provides us with a new parametric approach to a solution ofP for
p = 2.

New parametric method
Step 1

for i = 1 and 2 do
solveP{i}(α) parametrically forα ∈ [0,1] and store the vertices
to be encountered

end for
Step 2

evaluate the functionf at the vertices and choose one with the
minimum value

The figure illustrates the case of two-dimension, where the bold arrows show
c
ᵀ
1 and cᵀ2 . Solving P{1}(α) parametrically, one yields the vertices denoted by a

circle, while the vertices denoted by a square are enumerated in solvingP{2}(α).
The triangle shows the point where the both parametric linear programs end up.

Whenp > 2, solving evenp parametric linear programs will not always provide
an optimal solution ofP . As Theorem A.1 shows, if one enumerates all efficient
points for every nonempty proper subsetJ of {1,2, . . . , p} and for every value
of parameterα, one would obtain an optimal solution among the vertices to be
enumerated.
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